Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add filters

Language
Document Type
Year range
1.
arxiv; 2023.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2308.15251v1

ABSTRACT

Switzerland experienced one of the warmest summers during 2022. Extreme heat has been linked to increased mortality. Monitoring the mortality burden attributable to extreme heat is crucial to inform policies, such as heat warnings, and prevent heat-related deaths. In this study, we evaluate excess mortality during summer 2022, identify vulnerable populations and estimate temperature thresholds for heat warnings. We use nationwide mortality and population data in Switzerland during 2011-2022 by age, sex, day and canton. We develop a Bayesian ensemble modelling approach with dynamic population to predict expected mortality in summer 2022 and calculate excess by comparing expected with observed mortality. We account for covariates associated with mortality such as ambient temperature, national holidays and spatiotemporal random effects to improve predictions. After accounting for the effect of the COVID-19 pandemic, we found a 3% (95% credible interval: 0%-6%) excess mortality during summer 2022. We observed a total of 456 (5-891) excess deaths during summer 2022 in people older than 80 years. There was weak evidence of excess mortality in the other age groups. The highest excess mortality was observed in July (12%: 4%-19%), the hottest month in 2022. We also found that for heatwaves longer than four days, the minimum excess mortality temperature threshold in the oldest age group is the 70th percentile of the temperature. To reduce future summer excess mortality in Switzerland, we propose targeted heat warnings to older populations and reducing the temperature threshold when weather forecasts predict periods of extreme heat of four days or longer.


Subject(s)
COVID-19
2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.08.05.22278458

ABSTRACT

The direct and indirect impact of the COVID-19 pandemic on population-level mortality is of concern to public health but challenging to quantify. We modelled excess mortality and the direct and indirect effects of the pandemic on mortality in Switzerland. We analyzed yearly population data and weekly all-cause deaths by age, sex, and canton 2010-2019 and all-cause and laboratory-confirmed COVID-19 deaths from February 2020 to April 2022 (study period). Bayesian models predicted the expected number of deaths. A total of 13,130 laboratory-confirmed COVID-19 deaths were reported. The model estimated that COVID-19-related mortality was underestimated by a factor of 0.72 [95% Credible Interval: 0.46-0.78] resulting in 18,140 [15,962-20,174] excess deaths. After accounting for COVID-19 deaths, the observed mortality was 3% [-1-7] lower than expected, corresponding to a deficit of 4,406 deaths, with a wide credibility interval [-1,776-10,700]. Underestimation of COVID-19 deaths was greatest for ages 70 years and older; the mortality deficit was most pronounced in age groups 40 to 69 years. We conclude that shortcomings in testing caused underestimation of COVID-19-related deaths in Switzerland, particularly in older people. Although COVID-19 control measures may have negative effects (e.g., delays in seeking care or mental health impairments), after subtracting COVID-19 deaths, there were fewer deaths in Switzerland during the pandemic than expected, suggesting that any negative effects of control measures on mortality were offset by the positive effects. These results have important implications for the ongoing debate about the appropriateness of COVID-19 control measures.


Subject(s)
COVID-19 , Death
3.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.03.15.22272362

ABSTRACT

One year after the start of the COVID-19 vaccination programme in England, more than 43 million people older than 12 years old had received at least a first dose. Nevertheless, geographical differences persist, and vaccine hesitancy is still a major public health concern; understanding its determinants is crucial to managing the COVID-19 pandemic and preparing for future ones. In this cross-sectional population-based study we used cumulative data on the first dose of vaccine received by 01-01-2022 at Middle Super Output Area level in England. We used Bayesian hierarchical spatial models and investigated if the geographical differences in vaccination uptake can be explained by a range of community-level characteristics covering socio-demographics, political view, COVID-19 health risk awareness and targeting of high risk groups and accessibility. Deprivation is the covariate most strongly associated with vaccine uptake (Odds Ratio 0.55, 95\%CI 0.54-0.57; most versus least deprived areas). The most ethnically diverse areas have a 38\% (95\%CI 36-40\%) lower odds of vaccine uptake compared with those least diverse. Areas with the highest proportion of population between 12 and 24 years old had lower odds of vaccination (0.87, 95\%CI 0.85-0.89). Finally increase in vaccine accessibility is associated with higher COVID-19 uptake (OR 1.07, 95\%CI 1.03-1.12). Our results suggest that one year after the start of the vaccination programme, there is still evidence of inequalities in uptake, affecting particularly minorities and marginalised groups. Strategies including prioritising active outreach across communities and removing practical barriers and factors that make vaccines less accessible are needed to level up the differences.


Subject(s)
COVID-19
4.
arxiv; 2022.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2201.06458v2

ABSTRACT

COVID-19 related deaths underestimate the pandemic burden on mortality because they suffer from completeness and accuracy issues. Excess mortality is a popular alternative, as it compares observed with expected deaths based on the assumption that the pandemic did not occur. Expected deaths had the pandemic not occurred depend on population trends, temperature, and spatio-temporal patterns. In addition to this, high geographical resolution is required to examine within country trends and the effectiveness of the different public health policies. In this tutorial, we propose a framework using R to estimate and visualise excess mortality at high geographical resolution. We show a case study estimating excess deaths during 2020 in Italy. The proposed framework is fast to implement and allows combining different models and presenting the results in any age, sex, spatial and temporal aggregation desired. This makes it particularly powerful and appealing for online monitoring of the pandemic burden and timely policy making.


Subject(s)
COVID-19
5.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.10.18.21264686

ABSTRACT

The impact of the COVID-19 pandemic on excess mortality from all causes in 2020 varied across and within European countries. Using data for 2015-2019, we applied Bayesian spatio-temporal models to quantify the expected weekly deaths at the regional level had the pandemic not occurred in England, Greece, Italy, Spain, and Switzerland. With around 30%, Madrid, Castile-La Mancha, Castile-Leon (Spain) and Lombardia (Italy) were the regions with the highest excess mortality. In England, Greece and Switzerland, the regions most affected were Outer London and the West Midlands (England), Eastern, Western and Central Macedonia (Greece), and Ticino (Switzerland), with 15-20% excess mortality in 2020. Our study highlights the importance of the large transportation hubs for establishing community transmission in the first stages of the pandemic. Acting promptly to limit transmission around these hubs is essential to prevent spread to other regions and countries.


Subject(s)
COVID-19 , Distal Myopathies
6.
arxiv; 2021.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2107.11589v1

ABSTRACT

The COVID-19 pandemic has been influencing travel behaviour in many urban areas around the world since the beginning of 2020. As a consequence, bike-sharing schemes have been affected partly due to the change in travel demand and behaviour as well as a shift from public transit. This study estimates the varying effect of the COVID-19 pandemic on the London bike-sharing system (Santander Cycles) over the period March-December 2020. We employed a Bayesian second-order random walk time-series model to account for temporal correlation in the data. We compared the observed number of cycle hires and hire time with their respective counterfactuals (what would have been if the pandemic had not happened) to estimate the magnitude of the change caused by the pandemic. The results indicated that following a reduction in cycle hires in March and April 2020, the demand rebounded from May 2020, remaining in the expected range of what would have been if the pandemic had not occurred. This could indicate the resiliency of Santander Cycles. With respect to hire time, an important increase occurred in April, May, and June 2020, indicating that bikes were hired for longer trips, perhaps partly due to a shift from public transit.


Subject(s)
COVID-19
7.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.10.20171421

ABSTRACT

Background: Recent studies suggested a link between long-term exposure to air-pollution and COVID-19 mortality. However, due to their ecological design, based on large spatial units, they neglect the strong localised air-pollution patterns, and potentially lead to inadequate confounding adjustment. We investigated the effect of long-term exposure to NO2 and PM2.5 on COVID-19 deaths up to June 30, 2020 in England using high geographical resolution. Methods: We included 38 573 COVID-19 deaths up to June 30, 2020 at the Lower Layer Super Output Area level in England (n=32 844 small areas). We retrieved averaged NO2 and PM2.5 concentration during 2014-2018 from the Pollution Climate Mapping. We used Bayesian hierarchical models to quantify the effect of air-pollution while adjusting for a series of confounding and spatial autocorrelation. Findings: We find a 0.5% (95% credible interval: -0.2%-1.2%) and 1.4% (-2.1%-5.1%) increase in COVID-19 mortality rate for every 1g/m3 increase in NO2 and PM2.5 respectively, after adjusting for confounding and spatial autocorrelation. This corresponds to a posterior probability of a positive effect of 0.93 and 0.78 respectively. The spatial relative risk at LSOA level revealed strong patterns, similar for the different pollutants. This potentially captures the spread of the disease during the first wave of the epidemic. Interpretation: Our study provides some evidence of an effect of long-term NO2 exposure on COVID-19 mortality, while the effect of PM2.5 remains more uncertain. Funding: Medical Research Council, Wellcome Trust, Environmental Protection Agency and National Institutes of Health.


Subject(s)
COVID-19
8.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.03.04.20031104

ABSTRACT

Background. As of 16 May 2020, more than 4.5 million cases and more than 300,000 deaths from disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported. Reliable estimates of mortality from SARS-CoV-2 infection are essential to understand clinical prognosis, plan health care capacity and for epidemic forecasting. The case fatality ratio (CFR), calculated from total numbers of reported cases and reported deaths, is the most commonly reported metric, but can be a misleading measure of overall mortality. The objectives of this study were to: 1) simulate the transmission dynamics of SARS-CoV-2 using publicly available surveillance data; 2) infer estimates of SARS-CoV-2 mortality adjusted for biases and examine the CFR, the symptomatic case fatality ratio (sCFR) and the infection fatality ratio (IFR) in different geographic locations. Method and Findings. We developed an age-stratified susceptible-exposed- infected-removed (SEIR) compartmental model describing the dynamics of transmission and mortality during the SARS-CoV-2 epidemic. Our model accounts for two biases: preferential ascertainment of severe cases and right-censoring of mortality. We fitted the transmission model to surveillance data from Hubei province, China and applied the same model to six regions in Europe: Austria, Bavaria (Germany), Baden-Wuerttemberg (Germany), Lombardy (Italy), Spain and Switzerland. In Hubei, the baseline estimates were: CFR 2.4% (95% credible interval [CrI]: 2.1-2.8%), sCFR 3.7% (3.2-4.2%) and IFR 2.9% (2.4-3.5%). Estimated measures of mortality changed over time. Across the six locations in Europe estimates of CFR varied widely. Estimates of sCFR and IFR, adjusted for bias, were more similar to each other but still showed some degree of heterogeneity. Estimates of IFR ranged from 0.5% (95% CrI 0.4-0.6%) in Switzerland to 1.4% (1.1-1.6%) in Lombardy, Italy. In all locations, mortality increased with age. Among 80+ year olds, estimates of the IFR suggest that the proportion of all those infected with SARS-CoV-2 who will die ranges from 20% (95% CrI: 16-26%) in Switzerland to 34% (95% CrI: 28-40%) in Spain. A limitation of the model is that count data by date of onset are required and these are not available in all countries. Conclusions. We propose a comprehensive solution to the estimation of SARS-Cov-2 mortality from surveillance data during outbreaks. The CFR is not a good predictor of overall mortality from SARS-CoV-2 and should not be used for evaluation of policy or comparison across settings. Geographic differences in IFR suggest that a single IFR should not be applied to all settings to estimate the total size of the SARS-CoV-2 epidemic in different countries. The sCFR and IFR, adjusted for right-censoring and preferential ascertainment of severe cases, are measures that can be used to improve and monitor clinical and public health strategies to reduce the deaths from SARS-CoV-2 infection.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Death
SELECTION OF CITATIONS
SEARCH DETAIL